

UKAS ISO/IEC 17025 Accredited Testing Laboratory No. 4279
Exova Environmental (UK) Ltd trading as Exova Catalyst & Exova Catalyst Ireland
Unit C5, Emery Court, The Embankment Business Park, Stockport, SK4 3GL

Exova Catalyst, Unit 3, Wednesbury One, Black Country New Road, Wednesbury, WS10 7NZ
Your Exova Catalyst Contact: James Eldridge (07826 916 684)
E: james.eldridge@exova.com

Stack Emissions Testing Report Commissioned by

Brierley British Crystal

Installation Name & Address

Brierley British Crystal
Unit 14
Pedmore Road Industrial Estate
Brierley Hill
West Midlands
DY5 1TJ

PPC Permit: PB 98 Variation 200839393

Stack Reference

Acid Fume Scrubber

Dates of the Monitoring Campaign

23rd January 2019

Job Reference Number

CAT-4637

Report \	Vritten by
----------	------------

Harpreet Badwal Team Leader MCERTS Level 2 MM 03 149 TE1 TE2 TE3 TE4

Report Approved by

Michelle Edwards Team Leader MCERTS Level 2 MM 05 659 TE1 TE2 TE3 TE4

Report Date

18th February 2019

Version

Version 1

Signature of Report Approver

MEdwaray

CONTENTS

TITLE PAGE

CONTENTS

EXECUTIVE SUMMARY

Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Summary of Sampling Deviations	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Exova Catalyst's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Exova Catalyst.

(Page 1 of 7)

MONITORING OBJECTIVES

Brierley British Crystal, Brierley Hill Acid Fume Scrubber 23rd January 2019

Overall Aim of the Monitoring Campaign

Exova Catalyst were commissioned by Brierley British Crystal to carry out stack emissions testing on the Acid Fume Scrubber at Brierley Hill.

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values (ELVs) as specified in the Site's Permit.

Special Requirements

There were no special requirements.

Target Parameters

Hydrogen Fluoride

(Page 2 of 7)

MONITORING RESULTS

Brierley British Crystal, Brierley Hill Acid Fume Scrubber 23rd January 2019

where MU = Measurement Uncertainty associated with the Result

		Concentrati	ion			Mass Emiss	ion	
Parameter	Units	Result	MU	Limit	Units	Result	MU	Limit
			+/-				+/-	
Hydrogen Fluoride 1	mg/m³	< 0.07	0.005	5	g/hr	< 0.37	0.03	-
Water Vapour	% v/v	0.51	0.13					
Stack Gas Temperature	°C	5.0						
Stack Gas Velocity	m/s	8.3	0.20					
Volumetric Flow Rate (ACTUAL)	m³/hr	5416	277					
Volumetric Flow Rate (REF)	m³/hr	5170	265					

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM THE PRELIMINARY VELOCITY TRAVERSE.

¹ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

MONITORING DATE(S) & TIMES

Brierley British Crystal, Brierley Hill Acid Fume Scrubber 23rd January 2019

Parameter		Units	Concentration	Units	Mass Emission	Sampling Date(s)	Sampling Times	Duration mins
Hydrogen Fluoride	R1	mg/m³	< 0.07	g/hr	< 0.37	23/01/2019	11:08 - 11:38	30
Velocity Traverse	R1					23/01/2019	10.50 - 10:58	

All results are expressed at the respective reference conditions.

(Page 4 of 7)

PROCESS DETAILS

Brierley British Crystal, Brierley Hill Acid Fume Scrubber 23rd January 2019

Standard Operating Conditions

Parameter	Value
Process Status	Normal Operation
Capacity (of 100%) and Tonnes / Hour	Full Extraction
Continuous or Batch Process	Continuous
Feedstock (if applicable)	Acid Fume
Abatement System	Wet Scrubber
Abatement System Running Status	On
Fuel	N/A
Plume Appearance	None Visible

(Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Brierley British Crystal, Brierley Hill Acid Fume Scrubber 23rd January 2019

		Monitoring				Analysis				
Parameter	Standard	Technical Procedure	ISO 17025 Testing	Testing Lab	Analytical Procedure	Analytical Technique	ISO 17025 Analysis	Analysis Lab	MCERTS Testing	LOD (Average)
Hydrogen Fluoride	ISO 15713	CAT-TP-10	Yes	CAT	CAT-AP-01	IC	Yes	CAT	Yes	0.072 mg/m³
Water Vapour	EN 14790	CAT-TP-05	Yes	CAT	CAT-TP-05	Gravimetric	Yes	CAT	Yes	0.1 % v/v
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	Yes	CAT	Pitot ⁻	Tube and Thermo	couple		Yes	1.2 m/s

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

Exova Catalyst (CAT) ISO 17025 Accreditation Number: 4279	€
---	---

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
Hydrogen Fluoride	I All Runs	The measurement uncertainty for water vapour was greater than 20%. This was due to the low level of water vapour which was found to be present in the stack.

Brierley British Crystal Brierley Hill Acid Fume Scrubber Job Number: CAT-4637, Version 1 Sample Date/s: 23rd January 2019 PPC Permit: PB 98 Variation 200839393

Executive Summary

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Parameter	Units	Value
Туре	-	Circular
Depth	m	0.48
Width	m	-
Area	m²	0.18
Port Depth	cm	0
Orientation of Duct	-	Vertical
Number of Ports	-	1
Sample Port Size	-	4" Hole

Location of Sampling Platform

General Platform Information	Value
Permanent / Temporary Platform	Temporary
Inside / Outside	Outside

Platform Details

EA Technical Guidance Note M1 / EN 15259 Platform Requirements	Value
Sufficient working area to manipulate probe and operate the measuring instruments	No
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	Yes
Platform has vertical base boards (approx. 0.25m high)	Yes
Platform has chains / self closing gates at top of ladders	No
There are no obstructions present which hamper insertion of sampling equipment	Yes
Safe Access Available	Yes
Easy Access Available	Yes

Sampling Location / Platform Improvement Recommendations

All platforms should be designed in accordance with the requirements in the Environment Agency's Technical Guidance Note M1 and EN 15259.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

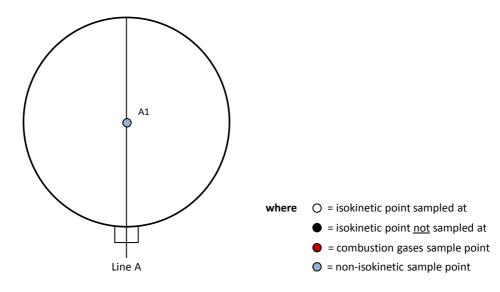
Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1
Lowest Differential Pressure	Pa	44.0
Mean Velocity	m/s	8.31
Lowest Gas Velocity	m/s	7.09
Highest Gas Velocity	m/s	9.74
Ratio of Above	: 1	1.37
Maximum Angle of Swirl	0	NM
No Local Negative Flow	-	Yes

Where NM = Not Measured as no Isokinetic sampling was performed.

Executive Summary

(Page 7 of 7)



PLANT PHOTOS

Photo 1

SAMPLE POINTS

APPENDICES

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK EMISSIONS MONITORING PERSONNEL

Position	Name	MCERTS Accreditation	MCERTS Number	Technical Endorsements
Team Leader	Harpreet Badwal	MCERTS Level 2	MM 03 149	TE1 TE2 TE3 TE4
Technician	Lee Heaton	MCERTS Level 1	MM 17 1433	None

LIST OF EQUIPMENT

Extractive Sampling			
Equipment Type	Equipment I.D.		
Control Box DGM (1)	-		
Control Box DGM (2)	-		
Box Thermocouples (1)	-		
Box Thermocouples (2)	-		
Umbilical (1)	-		
Umbilical (2)	-		
Oven Box (1)	-		
Oven Box (2)	-		
Heated Probe (1)	CAT 5.126		
Heated Probe (2)	CAT 5.127		
Heated Probe (3)	CAT 5.128		
S-Pitot (1)	CAT 21S.57		
S-Pitot (2)	CAT 21P.110		
L-Pitot	-		
Site Balance	CAT 17.33		
500g / 1Kg Check Weights	CAT 17.33 a & b		
Last Impinger Arm	-		
Callipers	-		
Tubes Kit Thermocouple	-		

Instrumental Analysers			
Equipment Type	Equipment I.D.		
Horiba PG-350E	-		
Horiba PG-250	-		
Servomex 4900	-		
Eco Physics CLD 822Mh	-		
ABB AO2020-URAS26	-		
Testo 350 XL	-		
Ankersmid APS 313	-		
Gasmet DX4000	-		
Gasmet Sampling System	-		
Bernath 3006 FID	-		
M&C PSS	-		
Mass Flow Controller (1)	-		
Mass Flow Controller (2)	-		
Mass View (1)	CAT 25.59		
Mass View (2)	CAT 25.60		
Hioki 5043 (V)	-		
Easylogger EN-EL-12 Bit	-		
Bioaerosols Temperature Logger	-		
Electronic Refrigerator	-		

Miscellaneous Items			
Equipment Type	Equipment I.D.		
Digital Manometer (1)	CAT 3.142		
Digital Manometer (2)	CAT 3.144		
Digital Temperature Meter	-		
Stopwatch	CAT 14.84		
Barometer	CAT 13.40		
Stack Thermocouple (1)	CAT 4.1034		
Stack Thermocouple (2)	CAT 4.1048		
Stack Thermocouple (3)	CAT 4.1135		
1m Heated Line (1)	-		
1m Heated Line (2)	-		
1m Heated Line (3)	-		
5m Heated Line (1)	-		
15m Heated Line (1)	-		
20m Heated Line (1)	-		
20m Heated Line (2)	-		
Dual Channel Heater Controller	-		
Single Channel Heater Controller	-		
Laboratory Balance			
Tape Measure	CAT 16.45		

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure	
Under son Election	100 45743	CAT TD 40	
Hydrogen Fluoride	ISO 15713	CAT-TP-10	
Water Vapour	EN 14790	CAT-TP-05	
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	0.48
Stack Width, W	m	-
Stack Area, A	m²	0.18
Average Stack Gas Temperature, T _a	°C	5.0
Average Stack Gas Pressure	Pa	61.3
Average Stack Static Pressure, P _{static}	kPa	0.072
Average Barometric Pressure, P _b	kPa	98.4
Average Pitot Tube Calibration Coefficient, Cp	-	0.84

Stack Gas Composition & Molecular Weights

Component		Conc ppm	Conc Dry % v/v	Conc Wet % v/v	Volume Fraction r	Molar Mass M	Density kg/m³ p	Conc kg/m³ p _i
CO ₂	(Estimated)	-	0.06	0.06	0.0006	44.01	1.9635	0.00118
O ₂	(Estimated)	-	20.80	20.69	0.2080	32.00	1.4277	0.29696
N ₂		-	79.14	78.74	0.7914	28.01	1.2498	0.98913
Moisture (H₂O)		-	-	0.51	0.0051	18.02	0.8037	0.00408

Where: p = M / 22.41 $p_i = r \times p$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P _{STD}	kg/m³	1.287
Wet Density (STP), P STW	kg/m³	1.285
Dry Density (Actual), P Actual	kg/m³	1.229
Average Wet Density (Actual), P ActualW	kg/m³	1.226

Where: $P_{STD} = \text{sum of component concentrations, kg/m}^3$ (not including water vapour)

 P_{STW} = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour)

 $P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a)$

 $P_{ActualW}$ (at each sampling point) = P_{STW} x (T_s / P_s) x (P_a / T_a)

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Actual	REF ¹	
Temperature	°C	5.0	0.0	
Total Pressure	kPa	98.5	101.3	
Moisture	%	0.51	0.51	

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	5416
Gas Volumetric Flowrate (STP, Wet)	m³/hr	5170
Gas Volumetric Flowrate (STP, Dry)	m³/hr	5144
Gas Volumetric Flowrate REF ¹	m³/hr	5170

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value
Date of Survey		-	23/01/2019
Time of Survey		-	10.50 - 10:58
Atmospheric Pres	sure	kPa	98.4
Average Stack Sta	tic Pressure	Pa	72
Result of Pitot Sta	gnation Test	-	Pass
Are Water Drople	ts Present?	-	No
Device Used	S-Type Pito	ot with KI	MO MP 210 (500Pa)

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Vertical
Pitot Tube, C _p	-	0.84
Number of Lines Available	-	1
Number of Lines Used	-	1

			9	Sampling Line A	1	
Traverse	Depth	ΔΡ	Temp	Wet Density	Velocity	Swirl
Point	m	Pa	°C	kg/m³	m/s	•
STATIC (Un	its: Pa)	72.0				
Mean		61.3	5.0	1.226	8.31	
1	0.03	83.0	5.0	1.226	9.74	
2	0.12	63.0	5.0	1.226	8.49	
3	0.36	55.0	5.0	1.226	7.93	
4	0.45	44.0	5.0	1.226	7.09	

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY (1 of 1)

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>∆pi</u>)	1.250	Pa
- Resolution	u(res)	0.00087	
- Calibration	u(cal)	0.391	
- Drift	u(drift)	0.083	
- Lack of Fit	u(fit)	0.089	
- Overall corrections to dynamic measurements	u(Cf)	0.563	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00003	-
- φO ₂ ,w	-	20.694	
- φCO ₂ ,w	-	0.060	
- Oxygen, dry	u(φO₂,d)	0.637	
- Carbon Dioxide, dry	u(φCO₂,d)	0.002	
- Water Vapour	u(φH₂O)	0.026	
- Oxygen, wet	u(φO₂,w)	0.634	
- Carbon Dioxide, wet	u(φCO₂,w)	0.002	
Standard uncertainty associated with the stack temperature	u(Tc)	1.418	К
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.696	Pa
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	1.250	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00663	-
Standard uncertainty associated with the local velocities	u(vi)	0.127	Pa
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	0.101	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	0.198	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	2.39	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	277.1	m³/hr
- u²(a)/a²	-	0.00053	
- u²(qV,w)/q²V,w	-	0.00068	
- u²(qV,w)	-	19988	
- u(qV,w)	-	141.4	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	5.12	%

HYDROGEN FLUORIDE: RESULTS SUMMARY

Brierley British Crystal, Brierley Hill Acid Fume Scrubber

Sample Runs

Parameter	Units	Run 1
Concentration	mg/m³	< 0.07
Uncertainty	±mg/m³	0.005
Mass Emission	g/hr	< 0.37
Uncertainty	±g/hr	0.03

Parameter	Units Run 1
Water Vapour	% v/v 0.51
Uncertainty	±% v/v 0.13

Blank Runs

General Sampling Information

Parameter	Value
Standard	ISO 15713
Technical Procedure	CAT-TP-10
Name of Analytical Laboratory	CAT
Analytical Laboratory's Procedure	CAT-AP-01
ISO 17025 Accredited Analysis?	Yes
Date of Sample Analysis	29/01/2019
Probe Material	Monel
Filter Housing Material	Monel
Impinger Material	Polyethylene
Absorption Solution	0.1 mol/l Sodium Hydroxide
Positioning of Filter	In Stack
Filter Size and Material	47mm Quartz Fibre
Number of Sampling Lines Used	1/1
Number of Sampling Points Used	1/1
Sample Point I.D.'s	A1

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

 $Reference\ Conditions\ are:\ 273K,\ 101.3kPa,\ without\ correction\ for\ water\ vapour\ content.$

HYDROGEN FLUORIDE: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
		ī
Sampling Times	-	11:08 - 11:38
Sampling Dates	-	23/01/2019
Sampling Device	-	MFC / MV
Duration	mins	30
Volume Sampled (STP, Dry)	m³	0.2200
Volume Sampled (STP, Wet)	m³	0.2211
Volume Sampled (REF)	m³	0.2211
Sample Flow Rate	l/min	7.33
Laboratory Result for Front Impingers	μg/ml	< 0.05
Laboratory Result for Back Impinger	μg/ml	< 0.05
Volume in Front Impingers	ml	210.1
Volume in Back Impinger	ml	110.3
Mass in Front Impingers	μg	< 10.5
Mass in Back Impinger	μg	< 5.5
Total Mass Collected	μg	< 16.0
Calculated Concentration	mg/m³	< 0.07
Liquid Trap Start Mass	g	1247.0
Liquid Trap End Mass	g	1246.8
Silica Trap Start Mass	g	1431.8
Silica Trap End Mass	g	1432.9
Total Mass Of Water Vapour	g	0.9
Calculated Water Vapour	% v/v	0.51

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
		22/04/2040
Blank Dates	-	23/01/2019
Average Volume Sampled (REF)	m³	0.2211
Laboratory Result for Impingers	μg/ml	< 0.05
Volume in Impingers	ml	308.1
Total Mass Collected	μg	< 15.4
Calculated Concentration	mg/m³	< 0.07

HYDROGEN FLUORIDE: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	7.3
Pre-Sampling Leak Rate	l/min	0.01
Post-Sampling Leak Rate	l/min	0.01
Allowable Leak Rate	l/min	0.15
Leak Test Acceptable	-	Yes
Absorption Efficiency	Unite	Pun 1

Absorption Efficiency	Units	Run 1
Absorption Efficiency	%	100.0
Allowable Absorption Efficiency	%	N/A ²
Absorption Efficiency Acceptable	-	Yes ²

² The concentration is less than 30% of the ELV, therefore no assessment against an allowable efficiency is required.

MU (Concurrent Water Vapour)	Units	Run 1
D.A course and the containts (D.A.L.)	%	26.4
Measurement Uncertainty (MU)	70	26.4
Allowable MU	%	20.0
MU Acceptable	%	No

Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	I/min	7.0
Pre-Sampling Leak Rate	l/min	0.01
Post-Sampling Leak Rate	l/min	0.01
Allowable Leak Rate	l/min	0.14
Leak Test Acceptable	-	Yes

Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	0.5
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation		Run Number
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1	
The measurement uncertainty for water vapour was greater than 20%. This was due to the low level of water vapour which was found to be present in the stack.	wx	

Brierley British Crystal Brierley Hill Acid Fume Scrubber Job Number: CAT-4637, Version 1 Sample Date/s: 23rd January 2019 PPC Permit: PB 98 Variation 200839393

HYDROGEN FLUORIDE: MEASUREMENT UNCERTAINTY CALCULATIONS

			Value			Stand
Measured Quantities	Symbol	Run 1		Symbol	Units	Run 1
ampled Volume (STP)	V _m	0.2200		uV _m	m³	0.0044
Leak	L	0.14		uL	%	-
Laboratory Result	L _r	2.65		uL _r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00]	≤2%
Leak	%	0.14		≤2%
Laboratory Result	%	2.65		No Requirement

		Unc	ertainty i	n Measurement Units		Sensitivity Coefficient
Aeasured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.2200		0.33	
Leak	L	mg/m³	0.000		1.00	
Laboratory Result	L _r	mg/m³	0.002		1.00	

		U
Measured Quantities	Units	Run 1
Sampled Volume (STP)	mg/m³	0.001
Leak	mg/m³	0.0001
Laboratory Result	mg/m³	0.0019

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter Units	Run 1
Combined uncertainty mg/m	0.00
Expanded uncertainty (95% confidence), without Oxygen Correction mg/m	0.00
Expanded uncertainty (95% confidence), with Oxygen Correction mg/m	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations mg/m	0.00
Reported Uncertainty mg/m	0.00
Expanded uncertainty (95% confidence), without Oxygen Correction %	6.5
Expanded uncertainty (95% confidence), with Oxygen Correction %	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations %	6.5
Reported Uncertainty %	6.5

Brierley British Crystal Brierley Hill Acid Fume Scrubber Job Number: CAT-4637, Version 1 Sample Date/s: 23rd January 2019 PPC Permit: PB 98 Variation 200839393